Ray Peat: Links to referenced studies: Difference between revisions

From Ray Peat Forum Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 60: Line 60:
Enhanced cell migration is one of the underlying mechanisms in cancer invasion and metastasis. Therefore, inhibition of cell migration is considered to be an effective strategy for prevention of cancer metastasis. We found that emodin (3-methyl-1,6,8-trihydroxyanthraquinone), an active component from the rhizome of Rheum palmatum, significantly inhibited epidermal growth factor (EGF)- induced migration in various human cancer cell lines. In the search for the underlying molecular mechanisms, we demonstrated that phosphatidylinositol 3-kinase (PI3K) serves as the molecular target for emodin. In addition, emodin markedly suppressed EGF-induced activation of Cdc42 and Rac1 and the corresponding cytoskeleton changes. Moreover, emodin, but not LY294002, was able to block cell migration in cells transfected with constitutively active (CA)-Cdc42 and CA-Rac1 by interference with the formation of Cdc42/Rac1 and the p21-activated kinase complex. Taken together, data from this study suggest that emodin inhibits human cancer cell migration by suppressing the PI3K-Cdc42/Rac1 signaling pathway.  
Enhanced cell migration is one of the underlying mechanisms in cancer invasion and metastasis. Therefore, inhibition of cell migration is considered to be an effective strategy for prevention of cancer metastasis. We found that emodin (3-methyl-1,6,8-trihydroxyanthraquinone), an active component from the rhizome of Rheum palmatum, significantly inhibited epidermal growth factor (EGF)- induced migration in various human cancer cell lines. In the search for the underlying molecular mechanisms, we demonstrated that phosphatidylinositol 3-kinase (PI3K) serves as the molecular target for emodin. In addition, emodin markedly suppressed EGF-induced activation of Cdc42 and Rac1 and the corresponding cytoskeleton changes. Moreover, emodin, but not LY294002, was able to block cell migration in cells transfected with constitutively active (CA)-Cdc42 and CA-Rac1 by interference with the formation of Cdc42/Rac1 and the p21-activated kinase complex. Taken together, data from this study suggest that emodin inhibits human cancer cell migration by suppressing the PI3K-Cdc42/Rac1 signaling pathway.  
<ref>[http://link.springer.com/article/10.1007/s00018-005-5050-2?no-access=true Cell Mol Life Sci. 2005 May;62(10):1167-75. Emodin inhibits tumor cell migration through suppression of the phosphatidylinositol 3-kinase-Cdc42/Rac1 pathway. Huang Q, Shen HM, Ong CN.]</ref>
<ref>[http://link.springer.com/article/10.1007/s00018-005-5050-2?no-access=true Cell Mol Life Sci. 2005 May;62(10):1167-75. Emodin inhibits tumor cell migration through suppression of the phosphatidylinositol 3-kinase-Cdc42/Rac1 pathway. Huang Q, Shen HM, Ong CN.]</ref>
===Anthraquinone derivative emodin inhibits tumor-associated angiogenesis through inhibition of extracellular signal-regulated kinase 1/2 phosphorylation===
Abstract:
An anthraquinone derivative, emodin, suppresses tumor development both in vitro and in vivo. In this study, we examined the anti-angiogenic activity of emodin and its modifying effect on the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2. In cell cultures, emodin inhibited endothelial cell proliferation, migration, and tube formation in a dose-dependent manner. In addition, the mouse dorsal air sac assay revealed the vivo anti-angiogenic potential of emodin. Matrix metalloproteinase-9 (MMP-9) expression, which is critical for the angiogenic process, including migration and tube formation, decreased after exposure to emodin, as determined by polymerase chain reaction with reverse transcription (RT-PCR) and gelatin zymography. Moreover, the phosphorylation of ERK 1/2 decreased after exposure to emodin in a dose-dependent manner. These observations suggest that emodin has the potential to inhibit several angiogenic processes and that these effects may be related to suppression of the phosphorylation of ERK 1/2.
<ref>[http://www.sciencedirect.com/science/article/pii/S0014299906010533 Eur J Pharmacol. 2006 Dec 28;553(1-3):46-53. Epub 2006 Sep 23. Anthraquinone derivative emodin inhibits tumor-associated angiogenesis through inhibition of extracellular signal-regulated kinase 1/2 phosphorylation. Kaneshiro T, Morioka T, Inamine M, Kinjo T, Arakaki J, Chiba I, Sunagawa N, Suzui M, Yoshimi N.]</ref>
===Emodin suppresses hyaluronic acid-induced MMP-9 secretion and invasion of glioma cells===
Abstract:
Emodin, an inhibitor of protein tyrosine kinase, possesses antiviral, immunosuppressive, anti-inflammatory and anticancer effects. In the present study, we investigated the effect of emodin on the hyaluronic acid (HA)-induced invasion of human glioma cells. Emodin significantly inhibited the HA-induced invasion through a Matrigel coated chamber, secretion of matrix metalloproteinase (MMP)-2, and HA-induced secretion of MMP-9 in glioma cells. To investigate the possible mechanisms involved in these events, we performed Western blot analysis using phospho-specific antibodies, and found that emodin inhibited phosphorylation of focal adhesion kinase (FAK), extracellular regulated protein kinase (ERK) 1/2 and Akt/PKB; emodin also suppressed the transcriptional activity of two transcription factors, activator protein-1 (AP-1) and nuclear factor-κB (NF-κB), in glioma cells. In addition, oral administration of emodin suppressed in vivo MMP secretion by glioma tumors in nude mice. Taken together, our results indicate that emodin can effectively inhibit HA-induced MMP secretion and invasion of glioma through inhibition of FAK, ERK1/2 and Akt/PKB activation and partial inhibition of AP-1 and NF-κB transcriptional activities. Consequently, these results provide important insights into emodin as an anti-invasive agent for the therapy of human glioma.
<ref>[http://www.spandidos-publications.com/ijo/27/3/839/abstract Int J Oncol. 2005 Sep;27(3):839-46. Emodin suppresses hyaluronic acid-induced MMP-9 secretion and invasion of glioma cells. Kim MS, Park MJ, Kim SJ, Lee CH, Yoo H, Shin SH, Song ES, Lee SH.]</ref>
===Effect of emodin on cooked-food mutagen activation===
Abstract:
The herbs Rheum palmatum B and Polygonum cuspidatum S are frequently used as laxatives and anticancer drugs in Chinese medicine. The antimutagenic activity of these herbs as well as their active component emodin was examined in Salmonella typhimurium TA98. The crude extracts and emodin induced a dose-dependent decrease in the mutagenicity of benzo[a]pyrene (B[a]P), 2-amino-3-methyl-imidazo[4,5-f]quinoline (IQ) and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2). Furthermore, emodin reduced the mutagenicity of IQ by direct inhibition of the hepatic microsomal activation and not by interaction with proximate metabolites of IQ and/or by modification of DNA repair processes in the bacterial cell.
Abbreviations:
B[a]P = benzo[a]pyrene; DMSO = dimethylsulphoxide; IQ = 2-amino-3-methylimidazo[4,5-f]quinoline; Trp-P-2 = 3-amino-1-methyl-5H-pyrido[4,3-b]indole
<ref>[http://www.sciencedirect.com/science/article/pii/027869159190185A Food Chem Toxicol. 1991 Nov;29(11):765-70. Effect of emodin on cooked-food mutagen activation. Lee H, Tsai SJ.]</ref>
===Regulatory effects of emodin on NF-κB activation and inflammatory cytokine expression in RAW 264.7 macrophages===
Abstract:
Emodin, an anthraquinones component of Rheum palmatun, has been used for anti-inflammatory purposes. However, its underlying molecular effect(s) on target cells remain to be well clarified. Thus, our current study was aimed at investigating the regulatory mechanism of emodin on liposaccharide-induced inflammatory responses in RAW 264.7 macrophages by RT-PCR, Western blot analysis, immunocytochemical staining and immunofluorescence analysis. It was found that a treatment of 20 microg/ml emodin inhibited the expression of a panel of inflammatory-associated genes, including TNFalpha, iNOS, IL-10, cytosolic IkappaBalpha, IKK-alpha and IKK-gamma, to different extents as well as the nuclear translocation of NF-kappaB (nuclear factor-kappaB). The promoting effect of emodin on the production and translocation of p105 (the precursor of NF-kappaB p50) was time-dependent and reached a maximum at 5 h. Our data suggest that emodin plays its anti-inflammatory roles by regulating inflammatory cytokines, specifically by suppressing NF-kappaB activation.
<ref>[https://www.researchgate.net/publication/7799054_Regulatory_effects_of_emodin_on_NF-kB_activation_and_inflammatory_cytokine_expression_in_RAW_2647_macrophages Int J Mol Med. 2005 Jul;16(1):41-7. Regulatory effects of emodin on NF-kappaB activation and inflammatory cytokine expression in RAW 264.7 macrophages. Li HL, Chen HL, Li H, Zhang KL, Chen XY, Wang XW, Kong QY, Liu J.]</ref>
===Aloe-Emodin Metabolites Protected N -Methyl-D-Aspartate-Treated Retinal Ganglion Cells by Cu-Zn Superoxide Dismutase===
Abstract:
A high concentration of glutamate in the eyes not only activates N-methyl-D-aspartate (NMDA) receptors, but also is toxic to the retina ganglion cells (RGCs) in glaucomatous patients. Our previous study had found that aloe-emodin sulfates/glucuronides metabolites, an anthraquinone polyphenol, exerted a neuroprotective activity upon RGCs. In order to understand the mechanisms involved in this neuroprotective effect, this study aimed to determine the expressions of RNAs and proteins in various treatments. The proteins expressed in the control group, NMDA-treated group, and aloe-emodin metabolites-cotreated group were separated by two-dimensional gel electrophoresis (2-DE). Protein spots were excised from 2-DE and analyzed by nano-LC-MS/MS (nano-liquid chromatography with mass spectrometry; tandem MS). Quantitative polymerase chain reaction (Q-PCR) was used to investigate the RNA related to these proteins. There were 84 spots with significant differences in various treatments. Among the 84 spots, we identified 9 spots whose functions were closely related to regulate the apoptosis of cells. The results of Q-PCR were not completely unanimous with those of 2-DE. Our results suggested that aloe-emodin metabolites decreased NMDA-induced apoptosis of RGCs by preserving, and inducing, some proteins related to the antioxidation and regulation of cells' energy. Both the level of RNA and protein of superoxide dismutase (Cu-Zn) were significantly elevated after aloe-emodin metabolites were added. The mechanisms of neuroprotection are complicated, and involve not only the transcription and stability of mRNA, but also post-translation protein modifications, degradation, and protein-protein interaction.
<ref> [https://www.researchgate.net/publication/6383603_Aloe-Emodin_Metabolites_Protected_N_-Methyl-D-Aspartate-Treated_Retinal_Ganglion_Cells_by_Cu-Zn_Superoxide_Dismutase J Ocul Pharmacol Ther. 2007 Apr;23(2):152-71. Aloe-emodin metabolites protected N-methyl-d-aspartate-treated retinal ganglion cells by Cu-Zn superoxide dismutase. Lin HJ, Lai CC, Lee Chao PD, Fan SS, Tsai Y, Huang SY, Wan L, Tsai FJ.]</ref>
[https://www.researchgate.net/profile/Lei_Wan/publication/6383603_Aloe-Emodin_Metabolites_Protected_N_-Methyl-D-Aspartate-Treated_Retinal_Ganglion_Cells_by_Cu-Zn_Superoxide_Dismutase/links/0deec525646c27a9bc000000.pdf full text link]





Revision as of 14:07, 20 December 2015

Emodin

Emodin inhibits proinflammatory responses and inactivates histone deacetylase 1 in hypoxic rheumatoid synoviocytes.

Abstract:

Chronic inflammation of rheumatoid arthritis (RA) is promoted by proinflammatory cytokines and closely linked to angiogenesis. In the present study, we investigated the anti-inflammatory effects of emodin (1,3,8-trihydroxy-6-methyl-anthraquinone) isolated from the root of Rheum palmatum L. in interleukin 1 beta (IL-1β) and lipopolysaccharide (LPS)-stimulated RA synoviocytes under hypoxia. Emodin significantly inhibited IL-1β and LPS-stimulated proliferation of RA synoviocytes in a dose-dependent manner under hypoxic condition. Also, enzyme linked immunosorbent assay (ELISA) revealed that emodin significantly reduced the production of pro-inflammatory cytokines [tumor necrosis factor-alpha (TNF-α), IL-6 and IL-8], mediators [prostagladin E(2) (PGE(2)), matrix metalloproteinase (MMP)-1 and MMP-13] and vascular endothelial growth factor (VEGF) as an angiogenesis biomarker in IL-1β and LPS-treated synoviocytes under hypoxia. Consistently, emodin attenuated the expression of cyclooxygenase 2 (COX-2), VEGF, hypoxia inducible factor 1 alpha (HIF-1α), MMP-1 and MMP-13 at mRNA level in IL-1β and LPS-treated synoviocytes under hypoxia. Furthermore, emodin reduced histone deacetylase (HDAC) activity as well as suppressed the expression of HDAC1, but not HDAC2 in IL-1β and LPS-treated synoviocytes under hypoxia. Overall, these findings suggest that emodin inhibits proinflammatory cytokines and VEGF productions, and HDAC1 activity in hypoxic RA synoviocytes. [1]

full text link


Emodin down-regulates androgen receptor and inhibits prostate cancer cell growth.

Abstract:

Hormone-refractory relapse is an inevitable and lethal event for advanced prostate cancer patients after hormone deprivation. A growing body of evidence indicates that hormone deprivation may promote this aggressive prostate cancer phenotype. Notably, androgen receptor (AR) not only mediates the effect of androgen on the tumor initiation but also plays the major role in the relapse transition. This provides a strong rationale for searching new effective agents targeting the down-regulation of AR to treat or prevent advanced prostate cancer progression. Here, we show that emodin, a natural compound, can directly target AR to suppress prostate cancer cell growth in vitro and prolong the survival of C3(1)/SV40 transgenic mice in vivo. Emodin treatment resulted in repressing androgen-dependent transactivation of AR by inhibiting AR nuclear translocation. Emodin decreased the association of AR and heat shock protein 90 and increased the association of AR and MDM2, which in turn induces AR degradation through proteasome-mediated pathway in a ligand-independent manner. Our work indicates a new mechanism for the emodin-mediated anticancer effect and justifies further investigation of emodin as a therapeutic and preventive agent for prostate cancer. [2]

full text link


Effects of emodin treatment on mitochondrial ATP generation capacity and antioxidant components as well as susceptibility to ischemia–reperfusion injury in rat hearts: Single versus multiple doses and gender difference

Abstract:

Effects of emodin (EMD) treatment on mitochondrial ATP generation capacity and antioxidant components as well as susceptibility to ischemia–reperfusion (I–R) injury were examined in male and female rat hearts. Isolated-perfused hearts prepared from female rats were less susceptible to I–R injury than those of male rats. I–R caused significant decreases in ATP generation capacity and reduced glutathione (GSH) and α-tocopherol (α-TOC) levels as well as glutathione reductase, Se-glutathione peroxidase and Mn-superoxide dismutase (SOD) activities. The lower susceptibility of female hearts to myocardial I–R injury was associated with higher levels of GSH and α-TOC as well as activity of SOD than those of male hearts. EMD treatment at 3 daily doses (0.6 or 1.2 mmol/kg) could enhance myocardial mitochondrial ATP generation capacity and antioxidant components in both male and female rat hearts, but it only significantly protected against I–R injury in female hearts. Treatment with a single dose of EMD invariably enhanced mitochondrial antioxidant components and protected against I–R injury in both male and female hearts. The gender-dependent effect of EMD treatment at multiple doses may be related to the differential antioxidant response in the myocardium and/or induction of drug metabolizing enzymes in the liver. [3]


Effects of pharmacological preconditioning by emodin/oleanolic acid treatment and/or ischemic preconditioning on mitochondrial antioxidant components as well as the susceptibility to ischemia-reperfusion injury in rat hearts

Abstract:

Using an ex vivo rat heart model of ischemia-reperfusion (I-R) injury, we examined the effect of pharmacological preconditioning by chronic treatment with emodin (EMD)/oleanolic acid (OA) at low dose (25 micromol/kg/day x 15) and/or ischemic preconditioning (IPC) (4 cycles of 5 min ischemia followed by 5 min of reperfusion) on myocardial I-R injury. The results indicated that EMD/OA pretreatment, IPC, or their combinations (EMD+IPC and OA+IPC) protected against myocardial I-R injury, as assessed by lactate dehydrogenase leakage and contractile force recovery. The cardioprotection was associated with a differential enhancement in mitochondrial antioxidant components. The combined EMD/OA and IPC pretreatment produced cardioprotective action in a semi-additive manner. This suggested that EMD/OA pretreatment and IPC protected against myocardial I-R injury via a similar but not identical biochemical mechanism. [4]


Effects of emodin on synaptic transmission in rat hippocampal CA1 pyramidal neurons in vitro

Abstract:

Rhubarb extracts provide neuroprotection after brain injury, but the mechanism of this protective effect is not known. The present study tests the hypothesis that rhubarb extracts interfere with the release of glutamate by brain neurons and, therefore, reduce glutamate excitotoxicity. To this end, the effects of emodin, an anthraquinone derivative extracted from Rheum tanguticum Maxim. Ex. Balf, on the synaptic transmission of CA1 pyramidal neurons in rat hippocampus were studied in vitro. The excitatory postsynaptic potential (EPSP) was depressed by bath-application of emodin (0.3–30 μM). Paired-pulse facilitation (PPF) of the EPSP was significantly increased by emodin. The monosynaptic inhibitory postsynaptic potential (IPSP) recorded in the presence of glutamate receptor antagonists (DNQX and AP5) was not altered by emodin. Emodin decreased the frequency, but not the amplitude, of the miniature EPSP (mEPSP). The inhibition of the EPSP induced by emodin was blocked by either 8-CPT, an adenosine A1 receptor antagonist, or by adenosine deaminase. These results suggest that emodin inhibits the EPSP by decreasing the release of glutamate from Schaffer collateral/commissural terminals via the activation of adenosine A1 receptors in rat hippocampal CA1 area and that the neuroprotective effects of rhubarb extracts may result from decreased glutamate excitotoxicity. [5]


Emodin inhibits dietary induced atherosclerosis by antioxidation and regulation of the sphingomyelin pathway in rabbits

Abstract:

Using an ex vivo rat heart model of ischemia-reperfusion (I-R) injury, we examined the effect of pharmacological preconditioning by chronic treatment with emodin (EMD)/oleanolic acid (OA) at low dose (25 micromol/kg/day x 15) and/or ischemic preconditioning (IPC) (4 cycles of 5 min ischemia followed by 5 min of reperfusion) on myocardial I-R injury. The results indicated that EMD/OA pretreatment, IPC, or their combinations (EMD+IPC and OA+IPC) protected against myocardial I-R injury, as assessed by lactate dehydrogenase leakage and contractile force recovery. The cardioprotection was associated with a differential enhancement in mitochondrial antioxidant components. The combined EMD/OA and IPC pretreatment produced cardioprotective action in a semi-additive manner. This suggested that EMD/OA pretreatment and IPC protected against myocardial I-R injury via a similar but not identical biochemical mechanism. [6]


Emodin inhibits tumor cell migration through suppression of the phosphatidylinositol 3-kinase-Cdc42/Rac1 pathway

Abstract:

Enhanced cell migration is one of the underlying mechanisms in cancer invasion and metastasis. Therefore, inhibition of cell migration is considered to be an effective strategy for prevention of cancer metastasis. We found that emodin (3-methyl-1,6,8-trihydroxyanthraquinone), an active component from the rhizome of Rheum palmatum, significantly inhibited epidermal growth factor (EGF)- induced migration in various human cancer cell lines. In the search for the underlying molecular mechanisms, we demonstrated that phosphatidylinositol 3-kinase (PI3K) serves as the molecular target for emodin. In addition, emodin markedly suppressed EGF-induced activation of Cdc42 and Rac1 and the corresponding cytoskeleton changes. Moreover, emodin, but not LY294002, was able to block cell migration in cells transfected with constitutively active (CA)-Cdc42 and CA-Rac1 by interference with the formation of Cdc42/Rac1 and the p21-activated kinase complex. Taken together, data from this study suggest that emodin inhibits human cancer cell migration by suppressing the PI3K-Cdc42/Rac1 signaling pathway. [7]


Anthraquinone derivative emodin inhibits tumor-associated angiogenesis through inhibition of extracellular signal-regulated kinase 1/2 phosphorylation

Abstract:

An anthraquinone derivative, emodin, suppresses tumor development both in vitro and in vivo. In this study, we examined the anti-angiogenic activity of emodin and its modifying effect on the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2. In cell cultures, emodin inhibited endothelial cell proliferation, migration, and tube formation in a dose-dependent manner. In addition, the mouse dorsal air sac assay revealed the vivo anti-angiogenic potential of emodin. Matrix metalloproteinase-9 (MMP-9) expression, which is critical for the angiogenic process, including migration and tube formation, decreased after exposure to emodin, as determined by polymerase chain reaction with reverse transcription (RT-PCR) and gelatin zymography. Moreover, the phosphorylation of ERK 1/2 decreased after exposure to emodin in a dose-dependent manner. These observations suggest that emodin has the potential to inhibit several angiogenic processes and that these effects may be related to suppression of the phosphorylation of ERK 1/2. [8]


Emodin suppresses hyaluronic acid-induced MMP-9 secretion and invasion of glioma cells

Abstract:

Emodin, an inhibitor of protein tyrosine kinase, possesses antiviral, immunosuppressive, anti-inflammatory and anticancer effects. In the present study, we investigated the effect of emodin on the hyaluronic acid (HA)-induced invasion of human glioma cells. Emodin significantly inhibited the HA-induced invasion through a Matrigel coated chamber, secretion of matrix metalloproteinase (MMP)-2, and HA-induced secretion of MMP-9 in glioma cells. To investigate the possible mechanisms involved in these events, we performed Western blot analysis using phospho-specific antibodies, and found that emodin inhibited phosphorylation of focal adhesion kinase (FAK), extracellular regulated protein kinase (ERK) 1/2 and Akt/PKB; emodin also suppressed the transcriptional activity of two transcription factors, activator protein-1 (AP-1) and nuclear factor-κB (NF-κB), in glioma cells. In addition, oral administration of emodin suppressed in vivo MMP secretion by glioma tumors in nude mice. Taken together, our results indicate that emodin can effectively inhibit HA-induced MMP secretion and invasion of glioma through inhibition of FAK, ERK1/2 and Akt/PKB activation and partial inhibition of AP-1 and NF-κB transcriptional activities. Consequently, these results provide important insights into emodin as an anti-invasive agent for the therapy of human glioma. [9]


Effect of emodin on cooked-food mutagen activation

Abstract:

The herbs Rheum palmatum B and Polygonum cuspidatum S are frequently used as laxatives and anticancer drugs in Chinese medicine. The antimutagenic activity of these herbs as well as their active component emodin was examined in Salmonella typhimurium TA98. The crude extracts and emodin induced a dose-dependent decrease in the mutagenicity of benzo[a]pyrene (B[a]P), 2-amino-3-methyl-imidazo[4,5-f]quinoline (IQ) and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2). Furthermore, emodin reduced the mutagenicity of IQ by direct inhibition of the hepatic microsomal activation and not by interaction with proximate metabolites of IQ and/or by modification of DNA repair processes in the bacterial cell.


Abbreviations:

B[a]P = benzo[a]pyrene; DMSO = dimethylsulphoxide; IQ = 2-amino-3-methylimidazo[4,5-f]quinoline; Trp-P-2 = 3-amino-1-methyl-5H-pyrido[4,3-b]indole [10]


Regulatory effects of emodin on NF-κB activation and inflammatory cytokine expression in RAW 264.7 macrophages

Abstract:

Emodin, an anthraquinones component of Rheum palmatun, has been used for anti-inflammatory purposes. However, its underlying molecular effect(s) on target cells remain to be well clarified. Thus, our current study was aimed at investigating the regulatory mechanism of emodin on liposaccharide-induced inflammatory responses in RAW 264.7 macrophages by RT-PCR, Western blot analysis, immunocytochemical staining and immunofluorescence analysis. It was found that a treatment of 20 microg/ml emodin inhibited the expression of a panel of inflammatory-associated genes, including TNFalpha, iNOS, IL-10, cytosolic IkappaBalpha, IKK-alpha and IKK-gamma, to different extents as well as the nuclear translocation of NF-kappaB (nuclear factor-kappaB). The promoting effect of emodin on the production and translocation of p105 (the precursor of NF-kappaB p50) was time-dependent and reached a maximum at 5 h. Our data suggest that emodin plays its anti-inflammatory roles by regulating inflammatory cytokines, specifically by suppressing NF-kappaB activation. [11]


Aloe-Emodin Metabolites Protected N -Methyl-D-Aspartate-Treated Retinal Ganglion Cells by Cu-Zn Superoxide Dismutase

Abstract:

A high concentration of glutamate in the eyes not only activates N-methyl-D-aspartate (NMDA) receptors, but also is toxic to the retina ganglion cells (RGCs) in glaucomatous patients. Our previous study had found that aloe-emodin sulfates/glucuronides metabolites, an anthraquinone polyphenol, exerted a neuroprotective activity upon RGCs. In order to understand the mechanisms involved in this neuroprotective effect, this study aimed to determine the expressions of RNAs and proteins in various treatments. The proteins expressed in the control group, NMDA-treated group, and aloe-emodin metabolites-cotreated group were separated by two-dimensional gel electrophoresis (2-DE). Protein spots were excised from 2-DE and analyzed by nano-LC-MS/MS (nano-liquid chromatography with mass spectrometry; tandem MS). Quantitative polymerase chain reaction (Q-PCR) was used to investigate the RNA related to these proteins. There were 84 spots with significant differences in various treatments. Among the 84 spots, we identified 9 spots whose functions were closely related to regulate the apoptosis of cells. The results of Q-PCR were not completely unanimous with those of 2-DE. Our results suggested that aloe-emodin metabolites decreased NMDA-induced apoptosis of RGCs by preserving, and inducing, some proteins related to the antioxidation and regulation of cells' energy. Both the level of RNA and protein of superoxide dismutase (Cu-Zn) were significantly elevated after aloe-emodin metabolites were added. The mechanisms of neuroprotection are complicated, and involve not only the transcription and stability of mRNA, but also post-translation protein modifications, degradation, and protein-protein interaction. [12]

full text link



References

  1. Biol Pharm Bull. 2011;34(9):1432-7. Emodin inhibits proinflammatory responses and inactivates histone deacetylase 1 in hypoxic rheumatoid synoviocytes. Ha MK, Song YH, Jeong SJ, Lee HJ, Jung JH, Kim B, Song HS, Huh JE, Kim SH.
  2. Cancer Res. 2005 Mar 15;65(6):2287-95. Emodin down-regulates androgen receptor and inhibits prostate cancer cell growth. Cha TL, Qiu L, Chen CT, Wen Y, Hung MC.
  3. Life Sci. 2005 Oct 14;77(22):2770-82. Effects of emodin treatment on mitochondrial ATP generation capacity and antioxidant components as well as susceptibility to ischemia-reperfusion injury in rat hearts: single versus multiple doses and gender difference. Du Y, Ko KM.
  4. Mol Cell Biochem. 2006 Aug;288(1-2):135-42. Epub 2006 Apr 1. Effects of pharmacological preconditioning by emodin/oleanolic acid treatment and/or ischemic preconditioning on mitochondrial antioxidant components as well as the susceptibility to ischemia-reperfusion injury in rat hearts. Du Y, Ko KM.
  5. Neuropharmacology. 2005 Jul;49(1):103-11. Epub 2005 Mar 31. Effects of emodin on synaptic transmission in rat hippocampal CA1 pyramidal neurons in vitro. Gu JW, Hasuo H, Takeya M, Akasu T
  6. Chin Med J (Engl). 2006 May 20;119(10):868-70. Emodin inhibits dietary induced atherosclerosis by antioxidation and regulation of the sphingomyelin pathway in rabbits.Hei ZQ, Huang HQ, Tan HM, Liu PQ, Zhao LZ, Chen SR, Huang WG, Chen FY, Guo FF.
  7. Cell Mol Life Sci. 2005 May;62(10):1167-75. Emodin inhibits tumor cell migration through suppression of the phosphatidylinositol 3-kinase-Cdc42/Rac1 pathway. Huang Q, Shen HM, Ong CN.
  8. Eur J Pharmacol. 2006 Dec 28;553(1-3):46-53. Epub 2006 Sep 23. Anthraquinone derivative emodin inhibits tumor-associated angiogenesis through inhibition of extracellular signal-regulated kinase 1/2 phosphorylation. Kaneshiro T, Morioka T, Inamine M, Kinjo T, Arakaki J, Chiba I, Sunagawa N, Suzui M, Yoshimi N.
  9. Int J Oncol. 2005 Sep;27(3):839-46. Emodin suppresses hyaluronic acid-induced MMP-9 secretion and invasion of glioma cells. Kim MS, Park MJ, Kim SJ, Lee CH, Yoo H, Shin SH, Song ES, Lee SH.
  10. Food Chem Toxicol. 1991 Nov;29(11):765-70. Effect of emodin on cooked-food mutagen activation. Lee H, Tsai SJ.
  11. Int J Mol Med. 2005 Jul;16(1):41-7. Regulatory effects of emodin on NF-kappaB activation and inflammatory cytokine expression in RAW 264.7 macrophages. Li HL, Chen HL, Li H, Zhang KL, Chen XY, Wang XW, Kong QY, Liu J.
  12. J Ocul Pharmacol Ther. 2007 Apr;23(2):152-71. Aloe-emodin metabolites protected N-methyl-d-aspartate-treated retinal ganglion cells by Cu-Zn superoxide dismutase. Lin HJ, Lai CC, Lee Chao PD, Fan SS, Tsai Y, Huang SY, Wan L, Tsai FJ.