Ray Peat: Links to referenced studies: Difference between revisions

From Ray Peat Forum Wiki
Jump to navigation Jump to search
(Created page with "==Emodin== '''Emodin inhibits proinflammatory responses and inactivates histone deacetylase 1 in hypoxic rheumatoid synoviocytes.''' <ref>[http://www.ncbi.nlm.nih.gov/pubmed/...")
 
Line 1: Line 1:
==Emodin==
==Emodin==


'''Emodin inhibits proinflammatory responses and inactivates histone deacetylase 1 in hypoxic rheumatoid synoviocytes.'''
===Emodin inhibits proinflammatory responses and inactivates histone deacetylase 1 in hypoxic rheumatoid synoviocytes.===
<ref>[http://www.ncbi.nlm.nih.gov/pubmed/21881229 Biol Pharm Bull. 2011;34(9):1432-7. Emodin inhibits proinflammatory responses and inactivates histone deacetylase 1 in hypoxic rheumatoid synoviocytes. Ha MK, Song YH, Jeong SJ, Lee HJ, Jung JH, Kim B, Song HS, Huh JE, Kim SH.]</ref>
<ref> [http://www.ncbi.nlm.nih.gov/pubmed/21881229 Biol Pharm Bull. 2011;34(9):1432-7. Emodin inhibits proinflammatory responses and inactivates histone deacetylase 1 in hypoxic rheumatoid synoviocytes. Ha MK, Song YH, Jeong SJ, Lee HJ, Jung JH, Kim B, Song HS, Huh JE, Kim SH.]</ref>


Abstract
Abstract
Line 8: Line 8:
Chronic inflammation of rheumatoid arthritis (RA) is promoted by proinflammatory cytokines and closely linked to angiogenesis. In the present study, we investigated the anti-inflammatory effects of emodin (1,3,8-trihydroxy-6-methyl-anthraquinone) isolated from the root of Rheum palmatum L. in interleukin 1 beta (IL-1β) and lipopolysaccharide (LPS)-stimulated RA synoviocytes under hypoxia. Emodin significantly inhibited IL-1β and LPS-stimulated proliferation of RA synoviocytes in a dose-dependent manner under hypoxic condition. Also, enzyme linked immunosorbent assay (ELISA) revealed that emodin significantly reduced the production of pro-inflammatory cytokines [tumor necrosis factor-alpha (TNF-α), IL-6 and IL-8], mediators [prostagladin E(2) (PGE(2)), matrix metalloproteinase (MMP)-1 and MMP-13] and vascular endothelial growth factor (VEGF) as an angiogenesis biomarker in IL-1β and LPS-treated synoviocytes under hypoxia. Consistently, emodin attenuated the expression of cyclooxygenase 2 (COX-2), VEGF, hypoxia inducible factor 1 alpha (HIF-1α), MMP-1 and MMP-13 at mRNA level in IL-1β and LPS-treated synoviocytes under hypoxia. Furthermore, emodin reduced histone deacetylase (HDAC) activity as well as suppressed the expression of HDAC1, but not HDAC2 in IL-1β and LPS-treated synoviocytes under hypoxia. Overall, these findings suggest that emodin inhibits proinflammatory cytokines and VEGF productions, and HDAC1 activity in hypoxic RA synoviocytes.
Chronic inflammation of rheumatoid arthritis (RA) is promoted by proinflammatory cytokines and closely linked to angiogenesis. In the present study, we investigated the anti-inflammatory effects of emodin (1,3,8-trihydroxy-6-methyl-anthraquinone) isolated from the root of Rheum palmatum L. in interleukin 1 beta (IL-1β) and lipopolysaccharide (LPS)-stimulated RA synoviocytes under hypoxia. Emodin significantly inhibited IL-1β and LPS-stimulated proliferation of RA synoviocytes in a dose-dependent manner under hypoxic condition. Also, enzyme linked immunosorbent assay (ELISA) revealed that emodin significantly reduced the production of pro-inflammatory cytokines [tumor necrosis factor-alpha (TNF-α), IL-6 and IL-8], mediators [prostagladin E(2) (PGE(2)), matrix metalloproteinase (MMP)-1 and MMP-13] and vascular endothelial growth factor (VEGF) as an angiogenesis biomarker in IL-1β and LPS-treated synoviocytes under hypoxia. Consistently, emodin attenuated the expression of cyclooxygenase 2 (COX-2), VEGF, hypoxia inducible factor 1 alpha (HIF-1α), MMP-1 and MMP-13 at mRNA level in IL-1β and LPS-treated synoviocytes under hypoxia. Furthermore, emodin reduced histone deacetylase (HDAC) activity as well as suppressed the expression of HDAC1, but not HDAC2 in IL-1β and LPS-treated synoviocytes under hypoxia. Overall, these findings suggest that emodin inhibits proinflammatory cytokines and VEGF productions, and HDAC1 activity in hypoxic RA synoviocytes.


[https://www.jstage.jst.go.jp/article/bpb/34/9/34_9_1432/_pdf full text link]
 
===Emodin down-regulates androgen receptor and inhibits prostate cancer cell growth.===
<ref> [http://www.ncbi.nlm.nih.gov/pubmed/15781642 Cancer Res. 2005 Mar 15;65(6):2287-95. Emodin down-regulates androgen receptor and inhibits prostate cancer cell growth. Cha TL, Qiu L, Chen CT, Wen Y, Hung MC.]</ref>
 
Abstract
 
Hormone-refractory relapse is an inevitable and lethal event for advanced prostate cancer patients after hormone deprivation. A growing body of evidence indicates that hormone deprivation may promote this aggressive prostate cancer phenotype. Notably, androgen receptor (AR) not only mediates the effect of androgen on the tumor initiation but also plays the major role in the relapse transition. This provides a strong rationale for searching new effective agents targeting the down-regulation of AR to treat or prevent advanced prostate cancer progression. Here, we show that emodin, a natural compound, can directly target AR to suppress prostate cancer cell growth in vitro and prolong the survival of C3(1)/SV40 transgenic mice in vivo. Emodin treatment resulted in repressing androgen-dependent transactivation of AR by inhibiting AR nuclear translocation. Emodin decreased the association of AR and heat shock protein 90 and increased the association of AR and MDM2, which in turn induces AR degradation through proteasome-mediated pathway in a ligand-independent manner. Our work indicates a new mechanism for the emodin-mediated anticancer effect and justifies further investigation of emodin as a therapeutic and preventive agent for prostate cancer.




Line 14: Line 20:




Emodin down-regulates androgen receptor and inhibits prostate cancer cell growth.
http://www.ncbi.nlm.nih.gov/pubmed/15781642


Effects of emodin treatment on mitochondrial ATP generation capacity and antioxidant components as well as susceptibility to ischemia–reperfusion injury in rat hearts: Single versus multiple doses and gender difference
Effects of emodin treatment on mitochondrial ATP generation capacity and antioxidant components as well as susceptibility to ischemia–reperfusion injury in rat hearts: Single versus multiple doses and gender difference

Revision as of 12:55, 20 December 2015

Emodin

Emodin inhibits proinflammatory responses and inactivates histone deacetylase 1 in hypoxic rheumatoid synoviocytes.

[1]

Abstract

Chronic inflammation of rheumatoid arthritis (RA) is promoted by proinflammatory cytokines and closely linked to angiogenesis. In the present study, we investigated the anti-inflammatory effects of emodin (1,3,8-trihydroxy-6-methyl-anthraquinone) isolated from the root of Rheum palmatum L. in interleukin 1 beta (IL-1β) and lipopolysaccharide (LPS)-stimulated RA synoviocytes under hypoxia. Emodin significantly inhibited IL-1β and LPS-stimulated proliferation of RA synoviocytes in a dose-dependent manner under hypoxic condition. Also, enzyme linked immunosorbent assay (ELISA) revealed that emodin significantly reduced the production of pro-inflammatory cytokines [tumor necrosis factor-alpha (TNF-α), IL-6 and IL-8], mediators [prostagladin E(2) (PGE(2)), matrix metalloproteinase (MMP)-1 and MMP-13] and vascular endothelial growth factor (VEGF) as an angiogenesis biomarker in IL-1β and LPS-treated synoviocytes under hypoxia. Consistently, emodin attenuated the expression of cyclooxygenase 2 (COX-2), VEGF, hypoxia inducible factor 1 alpha (HIF-1α), MMP-1 and MMP-13 at mRNA level in IL-1β and LPS-treated synoviocytes under hypoxia. Furthermore, emodin reduced histone deacetylase (HDAC) activity as well as suppressed the expression of HDAC1, but not HDAC2 in IL-1β and LPS-treated synoviocytes under hypoxia. Overall, these findings suggest that emodin inhibits proinflammatory cytokines and VEGF productions, and HDAC1 activity in hypoxic RA synoviocytes.


Emodin down-regulates androgen receptor and inhibits prostate cancer cell growth.

[2]

Abstract

Hormone-refractory relapse is an inevitable and lethal event for advanced prostate cancer patients after hormone deprivation. A growing body of evidence indicates that hormone deprivation may promote this aggressive prostate cancer phenotype. Notably, androgen receptor (AR) not only mediates the effect of androgen on the tumor initiation but also plays the major role in the relapse transition. This provides a strong rationale for searching new effective agents targeting the down-regulation of AR to treat or prevent advanced prostate cancer progression. Here, we show that emodin, a natural compound, can directly target AR to suppress prostate cancer cell growth in vitro and prolong the survival of C3(1)/SV40 transgenic mice in vivo. Emodin treatment resulted in repressing androgen-dependent transactivation of AR by inhibiting AR nuclear translocation. Emodin decreased the association of AR and heat shock protein 90 and increased the association of AR and MDM2, which in turn induces AR degradation through proteasome-mediated pathway in a ligand-independent manner. Our work indicates a new mechanism for the emodin-mediated anticancer effect and justifies further investigation of emodin as a therapeutic and preventive agent for prostate cancer.




Effects of emodin treatment on mitochondrial ATP generation capacity and antioxidant components as well as susceptibility to ischemia–reperfusion injury in rat hearts: Single versus multiple doses and gender difference http://www.sciencedirect.com/science/article/pii/S0024320505005370


Effects of pharmacological preconditioning by emodin/oleanolic acid treatment and/or ischemic preconditioning on mitochondrial antioxidant components as well as the susceptibility to ischemia-reperfusion injury in rat hearts

https://www.researchgate.net/publication/7197028_Effects_of_pharmacological_preconditioning_by_emodinoleanolic_acid_treatment_andor_ischemic_preconditioning_on_mitochondrial_antioxidant_components_as_well_as_the_susceptibility_to_ischemia-reperfusio

Effects of emodin on synaptic transmission in rat hippocampal CA1 pyramidal neurons in vitro http://www.sciencedirect.com/science/article/pii/S0028390805000729


Emodin inhibits dietary induced atherosclerosis by antioxidation and regulation of the sphingomyelin pathway in rabbits https://www.researchgate.net/publication/7197028_Effects_of_pharmacological_preconditioning_by_emodinoleanolic_acid_treatment_andor_ischemic_preconditioning_on_mitochondrial_antioxidant_components_as_well_as_the_susceptibility_to_ischemia-reperfusio