The key role of Warburg effect in SARS-CoV-2 replication and associated inflammatory response

aliml

Member
Joined
Apr 17, 2017
Messages
692
Current mortality due to the Covid-19 pandemic (approximately 1.2 million by November 2020) demonstrates the lack of an effective treatment. As replication of many viruses - including MERS-CoV - is supported by enhanced aerobic glycolysis, we hypothesized that SARS-CoV-2 replication in host cells (especially airway cells) is reliant upon altered glucose metabolism. This metabolism is similar to the Warburg effect well studied in cancer. Counteracting two main pathways (PI3K/AKT and MAPK/ERK signaling) sustaining aerobic glycolysis inhibits MERS-CoV replication and thus, very likely that of SARS-CoV-2, which shares many similarities with MERS-CoV. The Warburg effect appears to be involved in several steps of COVID-19 infection. Once induced by hypoxia, the Warburg effect becomes active in lung endothelial cells, particularly in the presence of atherosclerosis, thereby promoting vasoconstriction and micro thrombosis. Aerobic glycolysis also supports activation of pro-inflammatory cells such as neutrophils and M1 macrophages. As the anti-inflammatory response and reparative process is performed by M2 macrophages reliant on oxidative metabolism, we speculated that the switch to oxidative metabolism in M2 macrophages would not occur at the appropriate time due to an uncontrolled pro-inflammatory cascade. Aging, mitochondrial senescence and enzyme dysfunction, AMPK downregulation and p53 inactivation could all play a role in this key biochemical event. Understanding the role of the Warburg effect in COVID-19 can be essential to developing molecules reducing infectivity, arresting endothelial cells activation and the pro-inflammatory cascade.

1.png


 

ddjd

Member
Joined
Jul 13, 2014
Messages
6,671
Current mortality due to the Covid-19 pandemic (approximately 1.2 million by November 2020) demonstrates the lack of an effective treatment. As replication of many viruses - including MERS-CoV - is supported by enhanced aerobic glycolysis, we hypothesized that SARS-CoV-2 replication in host cells (especially airway cells) is reliant upon altered glucose metabolism. This metabolism is similar to the Warburg effect well studied in cancer. Counteracting two main pathways (PI3K/AKT and MAPK/ERK signaling) sustaining aerobic glycolysis inhibits MERS-CoV replication and thus, very likely that of SARS-CoV-2, which shares many similarities with MERS-CoV. The Warburg effect appears to be involved in several steps of COVID-19 infection. Once induced by hypoxia, the Warburg effect becomes active in lung endothelial cells, particularly in the presence of atherosclerosis, thereby promoting vasoconstriction and micro thrombosis. Aerobic glycolysis also supports activation of pro-inflammatory cells such as neutrophils and M1 macrophages. As the anti-inflammatory response and reparative process is performed by M2 macrophages reliant on oxidative metabolism, we speculated that the switch to oxidative metabolism in M2 macrophages would not occur at the appropriate time due to an uncontrolled pro-inflammatory cascade. Aging, mitochondrial senescence and enzyme dysfunction, AMPK downregulation and p53 inactivation could all play a role in this key biochemical event. Understanding the role of the Warburg effect in COVID-19 can be essential to developing molecules reducing infectivity, arresting endothelial cells activation and the pro-inflammatory cascade.

View attachment 29910


View: https://twitter.com/JikkyKjj/status/1485914575128399872?t=GPjmtFDwBRhwbjHfuCusFw&s=19
 
OP
A

aliml

Member
Joined
Apr 17, 2017
Messages
692

Drugs relieving the Warburg effect may be effective in the treatment of long term Covid-19 complications​

Highlights
  • COVID-19 protein toxicity is a redox shift phenomenon.
  • Redox shift is due to Warburg effect and mitochondrial impairment.
  • The cytokine storm is a consequence of mitochondrial dysfunction.
  • Lipoic acid, Methylene blue and Chlorine dioxide relieve COVID-19 spike protein toxicity.
Abstract
We previously demonstrated that most diseases display a form of anabolism due to mitochondrial impairment: in cancer, a daughter cell is formed; in Alzheimer's disease, amyloid plaques; in inflammation cytokines and lymphokines. The infection by Covid-19 follows a similar pattern. Long-term effects include redox shift and cellular anabolism as a result of the Warburg effect and mitochondrial dysfunction. This unrelenting anabolism leads to the cytokine storm, chronic fatigue, chronic inflammation or neurodegenerative diseases. Drugs such as Lipoic acid and Methylene Blue have been shown to enhance the mitochondrial activity, relieve the Warburg effect and increase catabolism. Similarly, combining Methylene Blue, Chlorine dioxide and Lipoic acid may help reduce long-term Covid-19 effects by stimulating the catabolism.
 

Osukhan

Member
Joined
May 10, 2022
Messages
379
Location
Ohio
thanks for the article, I recently started taking ALA after reading about it from Brad Marshall's website
 

Similar threads

Back
Top Bottom