Spaceflight Wreaks Havoc on Liver Metabolism

AlphaCog

Member
Joined
Jan 28, 2014
Messages
90
A group of researchers led by the University of Tsukuba investigated the effects of the space environment on liver damage and discovered that gene expression in the liver is modified by space leading to greater oxidative stress.


Tsukuba, Japan—The latest findings of a series of studies on mice that examined harmful effects caused by spending time in space show that gene expression related to liver metabolism is altered in response to the space environment. The benefit of these findings is that it may be possible to offset these changes with dietary supplementation during spaceflight.


Like other inhabitants of this planet, humans have evolved for life on Earth, not life in space or elsewhere. During spaceflight, the human body is exposed to a harmful environment, characterized by null or microgravity and high radiation levels. The liver is affected by spaceflight more than any other organ—its crucial role in neutralizing harmful substances in the body means that spaceflight places incredible demands on the organ.


"Environmental stressors, such as high radiation and microgravity, induce a state of oxidative stress," explains Professor Iwao Ohtsu. "To deal with reactive oxygen and nitrogen compounds, the liver uses its limited resources, that is, antioxidant sulfur-containing compounds." The research team conducted novel experiments to compare liver gene expression levels between mice exposed to microgravity, mice exposed to simulated gravity on the International Space Station, and mice at ground level on Earth.


Mice that traveled to space and back had a lower antioxidant capacity because they had lower levels of the sulfur-containing compounds (e.g., ergothioneine, cysteine, and glutathione) that play a role in protecting cells by reducing reactive oxygen compounds, which limits free-radical damage. Overall, many indicators of oxidative stress were evident in the livers of these mice. In addition, there was greater expression of genes related to oxidative stress and sulfur metabolism pathways (which deplete levels of sulfur-containing antioxidant compounds) in mice that had been exposed to space.


Some effects, however, only occurred in mice exposed to microgravity. "Consequently, we were able to identify that some aspects of altered liver metabolism are counteracted by exposure to artificial gravity, whereas those caused by other environmental effects could be treated with alternative solutions, such as the addition of dietary supplements to astronauts' diets," says Professor Ohtsu.


This research not only identifies factors that could exacerbate the likelihood of liver damage but, by clarifying the role of specific metabolic pathways, also demonstrates the potential for existing drugs or dietary supplements to be used to treat or prevent such damage as humans embark on a new era of space exploration.

 
OP
AlphaCog

AlphaCog

Member
Joined
Jan 28, 2014
Messages
90
Keeping kidney stones at bay during space flights
UW Medicine to test innovative kidney stone ultrasonic propulsion procedure for NASA space missions and for patients on Earth. July 13, 2018
Media Contact: Leila Gray, 206.685.0381, [email protected]


kidney_stone_ultrasound_uw_medicine_web_pkg_kidney_stone_ultrasound.00_00_17_00.still003.jpg

Ultrasound imaging to locate a kidney stone

[Downloadable video files, photos and illustrations available.]

A new, painless, non-invasive procedure that harnesses ultrasound technology to reposition kidney stones will undergo testing in emergency patients.

The development and assessment of the new technology is led by University of Washington and UW Medicine, in collaboration with other universities and agencies.

Kidney stones are an increasingly common condition that affects 1 in 11 Americans during their lifetime. The condition is even more frequently encountered in astronauts during space travel. The hope is that the new technology could benefit astronauts as well as Earth-side patients.

The approach will be tested on local patients at UW Medicine’s Harborview Medical Center and University of Washington Medical Center emergency departments.

ultrasonic-propulsion-kidneystones.jpg

Examples of actual kdney stones showing their sizes.

Funding has been provided by the National Aeronautics and Space Administration (NASA), the National Institutes of Health's National Institute of Diabetes and Digestive and Kidney Diseases and the Department of Defense’s Surgical Research Institute.

After the invention of an ultrasound device to better detect kidney stones, engineers from the Applied Physics Laboratory at the University of Washington observed that they could accurately reposition small objects with ultrasound on a laboratory table. In conjunction with partners in the UW School of Medicine urology, emergency medicine, and radiology departments, the researchers went on to advance the technology and to use the same waves from a hand held ultrasound transducer to re-locate kidney stones in preliminary tests.

The work has also led to a spin off company, SonoMotion, which is working to develop a commercial device for the same purposes of non-invasive kidney stone repositioning.

Every year, more than 600 people in the throes of a kidney stone episode seek emergency care at Harborview and UW Medical Center in Seattle. Kidney stones become symptomatic if they enter the urinary tract, have trouble passing, and become stuck where they can cause debilitating pain. In addition, obstruction of urine flow causes a backup. This can result in swelling of the kidney and cramping in the ureter, thereby setting the stage for infection or further kidney damage.

Because space travel makes astronauts prone to kidney stones due, in part to bone demineralization from weightlessness, they are at increased risk. The NASA evidence base and publications note that astronauts have had more than 30 instances of kidney stones within two years of space travel. Medical assistance is a formidable challenge for those orbiting this planet or heading to other solar system destinations.

“For this trial we will be trying to reposition obstructing stones for our emergency department patients,” said Dr. M. Kennedy Hall, assistant professor of emergency medicine, and co-principal investigator of the study along with Dr. Hunter Wessells, professor and chair of urology, both at the UW School of Medicine

“Our hope is that we will be able to move stones back into patients’ kidneys.” Hall said, “This could make our patients more comfortable and allow them to deal with the kidney stone on their terms, not on the stone’s terms. An additional benefit of repositioning kidney stones is potentially avoiding unnecessary pain medications such as opioids for patients discharged from their kidney stone emergency.”

ultrasonic_propulsion_prototype_29386161_1529303183834128_7358525592305664000_n.jpg

Prototype of the ultrasonic kidney stone propulsion machine.

“We anticipate being able to reposition an acute stone to relieve pressure on the kidney. This would have the benefit of relieving suffering as well as avoiding emergent urologic intervention,” explained Wessells.

Their clinical research team will test a protocol that might be carried out safely and effectively during a space mission by on-board medical responders.

Michael Bailey, an ultrasound researcher at the UW Applied Physics Laboratory and one of the project leaders, emphasized, “This technology could give patients on Earth the ability to immediately return to normal life (in contrast to surgical treatments or continued, painful attempts to passing the stone). For astronauts in space, this option could save a life and allow astronauts to complete urgent mission responsibilities without having to turn the space shuttle around – a significant consideration.”

Bailey mentioned a past incident where Russian cosmonaut who seemed to be experiencing a blocking kidney stone while in space.

michael_bailey_kidney_stone_simulator_29386784_1529302783834168_7401887766809673728_n.jpg

Michael Bailey from the Applied Physics Lab at the kidney stone simulator .

The mission crew was preparing for emergency re-entry when it appeared that his stone finally passed.

The current rendition of the ultrasound kidney stone push technology has been coined the flexible ultrasound system, or FUS, and is about the size of a lecture podium on wheels. It has a built-in imaging screen and a hand-operated device for delivering the waves through the surface of the body. If trials on Earth are successful, NASA would likely plan to fly the ultrasound system in future missions, including longer duration human explorations of Mars.

In addition to Hall, Wessells and Bailey, the research team includes: Drs. Jonathan Harper and Mathew Sorensen from the Department of Urology, and Dr. Martin Gunn from the Department of Radiology, all UW Medicine physicians.

Many others including staff and students at the UW Applied Physics Laboratory, investigators at the Surgical Outcomes Research Center in the Department of Surgery, the UW Medicine Institute of Translational Health Sciences, the UW CoMotion innovation hub collaborators from several other universities, UW Medicine residents, and many others are also contributing to the technology development, research, testing and assessment.

More info can be found at apl.uw.edu/pushingstones.

Wikipedia: Renal stone formation in space​

 
Last edited:

Similar threads

Back
Top Bottom