Soft-diet Feeding Decreases Dopamine Release And Impairs Aversion Learning In Alzheimer Model Rats

paymanz

Member
Joined
Jan 6, 2015
Messages
2,707
Soft-diet feeding decreases dopamine release and impairs aversion learning in Alzheimer model rats. - PubMed - NCBI

Abstract
To examine the effects of soft-diet feeding on the dopaminergic system in a model rat for Alzheimer's disease (AD), we measured dopamine release in the hippocampus using a microdialysis approach and assessed learning ability and memory using step-through passive avoidance tests. Furthermore, we immunohistochemically examined the ventral tegmental area (VTA), which is the origin of hippocampal dopaminergic fibers using tyrosine hydroxylase (TH), a marker enzyme for the dopaminergic nervous system. Feeding a soft diet decreased dopamine release in the hippocampus and impaired learning ability and memory in AD model rats in comparison with rats fed a hard diet; however, TH-immunopositive profiles in the VTA seemed not to be notably different between rats fed a soft diet and those fed a hard diet. These observations suggest that soft-diet feeding enhances the impairment of learning ability and memory through the decline of dopamine release in the hippocampus in AD rats.

Influence of a long-term powdered diet on the social interaction test and dopaminergic systems in mice. - PubMed - NCBI

Abstract
It is well known that the characteristics of mastication are important for the maintenance of our physical well-being. In this study, to assess the importance of the effects of food hardness during mastication, we investigated whether a long-term powdered diet might cause changes in emotional behavior tests, including spontaneous locomotor activity and social interaction (SI) tests, and the dopaminergic system of the frontal cortex and hippocampus in mice. Mice fed a powdered diet for 17 weeks from weaning were compared with mice fed a standard diet (control). The dopamine turnover and expression of dopamine receptors mRNA in the frontal cortex were also evaluated. Spontaneous locomotor activity, SI time and dopamine turnover of the frontal cortex were increased in powdered diet-fed mice. On the other hand, the expression of dopamine-4 (D4) receptors mRNA in the frontal cortex was decreased in powdered diet-fed mice. Moreover, we examined the effect of PD168077, a selective D4 agonist, on the increased SI time in powdered diet-fed mice. Treatment with PD168077 decreased the SI time. These results suggest that the masticatory dysfunction induced by long-term powdered diet feeding may cause the increased SI time and the changes in the dopaminergic system, especially dopamine D4 receptor subtype in the frontal cortex.

Soft-food diet induces oxidative stress in the rat brain. - PubMed - NCBI

Abstract
Decreased dopamine (DA) release in the hippocampus may be caused by dysfunctional mastication, although the mechanisms involved remain unclear. The present study examined the effects of soft- and hard-food diets on oxidative stress in the brain, and the relationship between these effects and hippocampal DA levels. The present study showed that DA release in the hippocampus was decreased in rats fed a soft-food diet. Electron spin resonance studies using the nitroxyl spin probe 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl directly demonstrated a high level of oxidative stress in the rat brain due to soft-food diet feeding. In addition, we confirmed that DA directly react with reactive oxygen species such as hydroxyl radical and superoxide. These observations suggest that soft-food diet feeding enhances oxidative stress, which leads to oxidation and a decrease in the release of DA in the hippocampus of rats.

Influences of dopamine receptors on chewing behaviour in rats. - PubMed - NCBI

Abstract
1. Intraperitoneal (i.p.) injection of different doses of pilocarpine induced purposeless chewing in rats. Physostigmine (i.p.), but not neostigmine (i.p.) also induced chewing behaviour. 2. Subcutaneous (s.c.) pretreatment of animals with the D-1 receptor blocker SCH 23390 decreased the number of chews induced by pilocarpine. 3. The D-2 dopamine antagonist sulpiride (i.p.) and anticholinergic atropine (i.p.) pretreatment also decreased the frequency of chews induced by the drug. 4. The response induced by pilocarpine (1 mg/kg i.p.) also was dose-dependently decreased in animals pretreated with apomorphine (0.25-1 mg/kg s.c.). 5. Administration of low doses of apomorphine (s.c.) also induced chewing, which was decreased with increasing the doses of the drug. 6. Chewing-induced by apomorphine was decreased by sulpiride or atropine and increased by SCH 23390 pretreatment. 7. Single administration of D-2 dopamine agonist bromocriptine also showed a slight but significant purposeless chewing, which was decreased by sulpiride pretreatment. 8. Single administration of D-2 agonist quinpirole, D-1 agonist SKF 38393 or D-1 antagonist SCH 23390, but not sulpiride caused a slight chewing. 9. It may be concluded that D-1 or D-2 activation exert opposite influences on chewing behaviour in rats, although to prove this effect more elucidation is needed.

-----------------------

Focus Better By Chewing Gum | Prevention

----------------------
 
Last edited:
Joined
Oct 3, 2015
Messages
81
Soft-diet feeding decreases dopamine release and impairs aversion learning in Alzheimer model rats. - PubMed - NCBI

Abstract
To examine the effects of soft-diet feeding on the dopaminergic system in a model rat for Alzheimer's disease (AD), we measured dopamine release in the hippocampus using a microdialysis approach and assessed learning ability and memory using step-through passive avoidance tests. Furthermore, we immunohistochemically examined the ventral tegmental area (VTA), which is the origin of hippocampal dopaminergic fibers using tyrosine hydroxylase (TH), a marker enzyme for the dopaminergic nervous system. Feeding a soft diet decreased dopamine release in the hippocampus and impaired learning ability and memory in AD model rats in comparison with rats fed a hard diet; however, TH-immunopositive profiles in the VTA seemed not to be notably different between rats fed a soft diet and those fed a hard diet. These observations suggest that soft-diet feeding enhances the impairment of learning ability and memory through the decline of dopamine release in the hippocampus in AD rats.

Influence of a long-term powdered diet on the social interaction test and dopaminergic systems in mice. - PubMed - NCBI

Abstract
It is well known that the characteristics of mastication are important for the maintenance of our physical well-being. In this study, to assess the importance of the effects of food hardness during mastication, we investigated whether a long-term powdered diet might cause changes in emotional behavior tests, including spontaneous locomotor activity and social interaction (SI) tests, and the dopaminergic system of the frontal cortex and hippocampus in mice. Mice fed a powdered diet for 17 weeks from weaning were compared with mice fed a standard diet (control). The dopamine turnover and expression of dopamine receptors mRNA in the frontal cortex were also evaluated. Spontaneous locomotor activity, SI time and dopamine turnover of the frontal cortex were increased in powdered diet-fed mice. On the other hand, the expression of dopamine-4 (D4) receptors mRNA in the frontal cortex was decreased in powdered diet-fed mice. Moreover, we examined the effect of PD168077, a selective D4 agonist, on the increased SI time in powdered diet-fed mice. Treatment with PD168077 decreased the SI time. These results suggest that the masticatory dysfunction induced by long-term powdered diet feeding may cause the increased SI time and the changes in the dopaminergic system, especially dopamine D4 receptor subtype in the frontal cortex.

Soft-food diet induces oxidative stress in the rat brain. - PubMed - NCBI

Abstract
Decreased dopamine (DA) release in the hippocampus may be caused by dysfunctional mastication, although the mechanisms involved remain unclear. The present study examined the effects of soft- and hard-food diets on oxidative stress in the brain, and the relationship between these effects and hippocampal DA levels. The present study showed that DA release in the hippocampus was decreased in rats fed a soft-food diet. Electron spin resonance studies using the nitroxyl spin probe 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl directly demonstrated a high level of oxidative stress in the rat brain due to soft-food diet feeding. In addition, we confirmed that DA directly react with reactive oxygen species such as hydroxyl radical and superoxide. These observations suggest that soft-food diet feeding enhances oxidative stress, which leads to oxidation and a decrease in the release of DA in the hippocampus of rats.

Influences of dopamine receptors on chewing behaviour in rats. - PubMed - NCBI

Abstract
1. Intraperitoneal (i.p.) injection of different doses of pilocarpine induced purposeless chewing in rats. Physostigmine (i.p.), but not neostigmine (i.p.) also induced chewing behaviour. 2. Subcutaneous (s.c.) pretreatment of animals with the D-1 receptor blocker SCH 23390 decreased the number of chews induced by pilocarpine. 3. The D-2 dopamine antagonist sulpiride (i.p.) and anticholinergic atropine (i.p.) pretreatment also decreased the frequency of chews induced by the drug. 4. The response induced by pilocarpine (1 mg/kg i.p.) also was dose-dependently decreased in animals pretreated with apomorphine (0.25-1 mg/kg s.c.). 5. Administration of low doses of apomorphine (s.c.) also induced chewing, which was decreased with increasing the doses of the drug. 6. Chewing-induced by apomorphine was decreased by sulpiride or atropine and increased by SCH 23390 pretreatment. 7. Single administration of D-2 dopamine agonist bromocriptine also showed a slight but significant purposeless chewing, which was decreased by sulpiride pretreatment. 8. Single administration of D-2 agonist quinpirole, D-1 agonist SKF 38393 or D-1 antagonist SCH 23390, but not sulpiride caused a slight chewing. 9. It may be concluded that D-1 or D-2 activation exert opposite influences on chewing behaviour in rats, although to prove this effect more elucidation is needed.

-----------------------

Focus Better By Chewing Gum | Prevention

----------------------
That's interesting . My dad who is ninety - eight flatly refuses to eat puréed food though he does cough and choke on his meals. I was wondering if this is lack of magnesium ( muscle spasm) He has been eating Ray Peat style all these years.( without knowing)
 

Blossom

Moderator
Forum Supporter
Joined
Nov 23, 2013
Messages
11,046
Location
Indiana USA
That's interesting . My dad who is ninety - eight flatly refuses to eat puréed food though he does cough and choke on his meals. I was wondering if this is lack of magnesium ( muscle spasm) He has been eating Ray Peat style all these years.( without knowing)
In the elderly this is usually due to weakening of the muscles involved in swallowing. The risk of continuing to eat foods that are difficult to swallow is the very real possibility of developing aspiration pneumonia when food goes into the lungs rather than the esophagus. Speech therapists can sometimes give exercises to try to strengthen the swallowing muscles. Tucking the chin forward when swallowing can also *sometimes* help get the food down into the right 'pipe' so to speak.
 
Joined
Oct 3, 2015
Messages
81
In the elderly this is usually due to weakening of the muscles involved in swallowing. The risk of continuing to eat foods that are difficult to swallow is the very real possibility of developing aspiration pneumonia when food goes into the lungs rather than the esophagus. Speech therapists can sometimes give exercises to try to strengthen the swallowing muscles. Tucking the chin forward when swallowing can also *sometimes* help get the food down into the right 'pipe' so to speak.
Thank you Blossom. I'll suggest this to him.
 
EMF Mitigation - Flush Niacin - Big 5 Minerals

Similar threads

Back
Top Bottom