RETRACTED ARTICLE: Aging Decreases Rate Of Docosahexaenoic Acid Synthesis-secretion From Circulating

Drareg

Member
Joined
Feb 18, 2016
Messages
4,772
Does anybody know if you can access what the researchers couldn't reproduce? An explanation?


RETRACTED ARTICLE: Aging decreases rate of docosahexaenoic acid synthesis-secretion from circulating unesterified α-linolenic acid by rat liver

Docosahexaenoic acid (DHA, 22:6n-3), an n-3 polyunsaturated fatty acid (PUFA) found at high concentrations in brain and retina and critical to their function, can be obtained from fish products or be synthesized from circulating α-linolenic acid (α-LNA, 18:3n-3) mainly in the liver. With aging, liver synthetic enzymes are reported reduced or unchanged in the rat. To test whether liver synthesis-secretion of DHA from α-LNA changes with age, we measured whole-body DHA conversion coefficients and rates in unanesthetized adult male Fischer-344 rats aged 10, 20, or 30 months, fed an eicosapentaenoic acid (EPA, 20:5n-3)- and DHA-containing diet. Unesterified [U- 13 C]α-LNA bound to albumin was infused intravenously for 2 h, while [13 C]-esterified n-3 PUFAs were measured in arterial plasma, as were unlabeled unesterified and esterified PUFA concentrations. Plasma unesterified n-3 PUFA concentrations declined with age, but esterified n-3 PUFA concentrations did not change significantly. Calculated conversion coefficients were not changed significantly with age, whereas synthesis-secretion rates (product of conversion coefficient and unesterified plasma α-LNA concentration) of esterified DHA and n-3 DPA were reduced. Turnovers of esterified n-3 PUFAs in plasma decreased with age, whereas half-lives increased. The results suggest that hepatic capacity to synthesize DHA and other n-3 PUFAs from circulating α-LNA is maintained with age in the rat, but that reduced plasma α-LNA availability reduces net synthesis-secretion. As unesterified plasma DHA is the form that is incorporated preferentially into brain phospholipid, its reduced synthesis may be deleterious to brain function in aged rats.


This article has been retracted by the authors as they were unable to reproduce some of the data and therefor consider them unreliable.
 

Similar threads

Back
Top Bottom