PUFA & Severe Covid - Cytokine Storm/Oxidative Stress

Mito

Member
Joined
Dec 10, 2016
Messages
2,554

Polyunsaturated fatty acids (PUFAs) are the targets of LPCR (lipid peroxidation chain reaction):​

LPCR primarily targets the double bonds in lipid molecules. PUFAs are the fatty acids with unsaturated double bonds between the carbon molecules in their backbone. Hence PUFAs are the primary targets of LPCR. All fatty acids can be oxidized, but with increasing difficulty from PUFAs to MUFAs (monounsaturated fatty acids) to saturated fats.[86]

The double bonds in PUFAs are relatively unstable and can be readily broken by oxidative free radicals, causing damage to these lipids. Cell membranes, and the membrane of subcellular organelles such as mitochondria are made up mostly of lipids. Once these lipids are damaged, their functions are also impaired. Cardiolipin, e.g., an abundant lipid on the mitochondria membrane, plays a critical role in cellular energy production. Peroxidation of PUFAs in cardiolipin may contribute to age-related decline in the mitochondrial function. [86] Cardiolipin is found to be damaged in many cancer cells as well. [87-90]

Saturated fatty acids don't have these double bonds, and MUFAs have only one such double bond. Hence saturated fats and MUFAs are more stable and less readily oxidized by free radicals.

Termination of LPCR:​

Once LPCR is initiated, it can propagate until all the lipids are oxidized or until it is terminated by antioxidants, especially vitamin E (VE). [35,96-98] VE is the chief LPCR chain-breaking antioxidant. VE is a lipid soluble antioxidant vitamin and is located on cell membranes, sitting among the lipid molecules. These features make VE the key antioxidant vitamin to protect cell membranes from oxidation. Other antioxidants, such as vitamin C, the primary extracellular antioxidant, do not have this LCPR termination effect. [35]

Cascade of Antioxidants:​

Vitamin E appears to be required to block the propagation of LPCR and to terminate LPCR. The oxidized VE will not in turn oxidize other lipid molecules, but instead, oxidized VE needs to be reduced by other antioxidants, especially vitamin C (VC). The oxidized VC needs to be reduced by alpha lipoic acid, CoQ10, glutathione, selenium and NADP+/NADP. The free radicals will be passed down onto NADP/NADPH cascade to be disposed of in water. These antioxidants work in a systematic manner (Fig. 2).
1642943755435.jpeg

Conclusion​

In conclusion, oxidative stress plays a central role in severe Covid-19 diseases and other diseases involving cytokine storm and oxidative stress. Lipid peroxidation is a central part of the cytokine storm. The prevention and termination of the lipid peroxidation chain reaction requires an integrative and systematic antioxidant cascade including vitamin C, vitamin E, CoQ10, alpha lipoic acid, glutathione and NAD+/NADP+ and others. Lacking or insufficiency of any of these components may render the antioxidant cascade ineffective, resulting in failure to prevent/block cytokine storm/oxidative stress. This mechanism is universal and non-specific to pathogens. Recognition of this mechanism may have a wide clinical implication to many viral and non-viral diseases. Clearly further clinical studies are warranted.
 
Last edited:
OP
Mito

Mito

Member
Joined
Dec 10, 2016
Messages
2,554

Free fatty acid binding pocket in the locked structure of SARS-CoV-2 spike protein​

Abstract​

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), represents a global crisis. Key to SARS-CoV-2 therapeutic development is unraveling the mechanisms that drive high infectivity, broad tissue tropism, and severe pathology. Our 2.85-angstrom cryo–electron microscopy structure of SARS-CoV-2 spike (S) glycoprotein reveals that the receptor binding domains tightly bind the essential free fatty acid linoleic acid (LA) in three composite binding pockets. A similar pocket also appears to be present in the highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV). LA binding stabilizes a locked S conformation, resulting in reduced angiotensin-converting enzyme 2 (ACE2) interaction in vitro. In human cells, LA supplementation synergizes with the COVID-19 drug remdesivir, suppressing SARS-CoV-2 replication. Our structure directly links LA and S, setting the stage for intervention strategies that target LA binding by SARS-CoV-2.

 

Jam

Member
Joined
Aug 10, 2018
Messages
2,212
Age
52
Location
Piedmont

Free fatty acid binding pocket in the locked structure of SARS-CoV-2 spike protein​

Abstract​

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), represents a global crisis. Key to SARS-CoV-2 therapeutic development is unraveling the mechanisms that drive high infectivity, broad tissue tropism, and severe pathology. Our 2.85-angstrom cryo–electron microscopy structure of SARS-CoV-2 spike (S) glycoprotein reveals that the receptor binding domains tightly bind the essential free fatty acid linoleic acid (LA) in three composite binding pockets. A similar pocket also appears to be present in the highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV). LA binding stabilizes a locked S conformation, resulting in reduced angiotensin-converting enzyme 2 (ACE2) interaction in vitro. In human cells, LA supplementation synergizes with the COVID-19 drug remdesivir, suppressing SARS-CoV-2 replication. Our structure directly links LA and S, setting the stage for intervention strategies that target LA binding by SARS-CoV-2.


Abstract​

COVID-19 pneumonia has specific features and outcomes that suggests a unique immunopathogenesis. Severe forms of COVID-19 appear to be more frequent in obese patients, but an association with metabolic disorders is not established. Here, we focused on lipoprotein metabolism in patients hospitalized for severe pneumonia, depending on COVID-19 status. Thirty-four non-COVID-19 and 27 COVID-19 patients with severe pneumonia were enrolled. Most of them required intensive care. Plasma lipid levels, lipoprotein metabolism, and clinical and biological (including plasma cytokines) features were assessed. Despite similar initial metabolic comorbidities and respiratory severity, COVID-19 patients displayed a lower acute phase response but higher plasmatic concentrations of non-esterified fatty acids (NEFAs). NEFA profiling was characterised by higher level of polyunsaturated NEFAs (mainly linoleic and arachidonic acids) in COVID-19 patients. Multivariable analysis showed that among severe pneumonia, COVID-19-associated pneumonia was associated with higher NEFAs, lower apolipoprotein E and lower high-density lipoprotein cholesterol concentrations, independently of body mass index, sequential organ failure (SOFA) score, and C-reactive protein levels. NEFAs and PUFAs concentrations were negatively correlated with the number of ventilator-free days. Among hospitalized patients with severe pneumonia, COVID-19 is independently associated with higher NEFAs (mainly linoleic and arachidonic acids) and lower apolipoprotein E and HDL concentrations. These features might act as mediators in COVID-19 pathogenesis and emerge as new therapeutic targets. Further investigations are required to define the role of NEFAs in the pathogenesis and the dysregulated immune response associated with COVID-19.
 

Lollipop2

Member
Joined
Nov 18, 2019
Messages
5,267
Despite similar initial metabolic comorbidities and respiratory severity, COVID-19 patients displayed a lower acute phase response but higher plasmatic concentrations of non-esterified fatty acids (NEFAs). NEFA profiling was characterised by higher level of polyunsaturated NEFAs (mainly linoleic and arachidonic acids) in COVID-19 patients. Multivariable analysis showed that among severe pneumonia, COVID-19-associated pneumonia was associated with higher NEFAs, lower apolipoprotein E and lower high-density lipoprotein cholesterol concentrations, independently of body mass index, sequential organ failure (SOFA) score, and C-reactive protein levels.
Remarkable no one is speaking about this…great information.
 
EMF Mitigation - Flush Niacin - Big 5 Minerals

Similar threads

Back
Top Bottom