Protecting your silver from pirates can come with lead

Amazoniac

Member
Joined
Sep 10, 2014
Messages
8,583
Location
Not Uganda
Some of you, survivalists, geopoliticians and international conflict specialists postgraduated on Twitter in weeks are now gun enthusiasts, carry one and feel invigorated in knowing that if there's life around, it's because of your choice to not have ended it, a decision that can be changed at any time. Regarding the protection of your silver against pirates, your exhaustive practices for the big moment can backfire, the pirates can just wait like vultures for your self-destruction to then make the move.

- Lead exposure at firing ranges—a review

"Most attention in the area of human health and guns has been rightly placed on shooting injuries and deaths [1]. However, decades of evidence indicate that substantial health risks are incurred by the shooters themselves in the form of lead exposure and subsequent poisoning. Indeed, as pointed out as early as 1994 by Ozonoff, based on high blood lead levels (BLLs) of shooters, “…firing ranges comprise one of the largest unregulated sources of occupational or para-occupational lead exposure for adults. The perils of firearms exist at both ends of the barrel.” [2]. The past two decades have brought substantial improvements in firing range environmental oversight as well as analytical capabilities to detect lead in humans, but literature evidence indicates that we fall far short of human health safety criteria in firing ranges of all types, and among occupational and recreational shooters."

"There are several sources of potential lead exposure from shooting guns and firing ranges. Most bullet projectiles are made from lead, but a large amount of lead is also present in the primer, composed of approximately 35% lead styphnate and lead peroxide (and also contains barium and antimony compounds), that ignites in a firearm barrel to provide the propulsion for the projectile [9–13]. A portion of the lead bullet disintegrates into fine fragments while passing through the gun due to misalignments of the gun barrel [9]. The lead particles, along with dust and fumes originating from the lead primer and the bullet fragments are ejected at high pressures (18,000–20,000 psi; 124–128 mpa) from the gun barrel, a large proportion of which occurs at right angles to the direction of fire in close proximity to the shooter [9]. The shooter can inhale fine Pb particulates (mainly from the primer) which constitutes the proximal exposure pathway. Fine and coarse particulates from both the primer and bullet fragments also attach to the shooters hands, clothing, and other surfaces, and can be inadvertently ingested, providing another lead exposure pathway [14, 15]. When changing targets at outdoor firing ranges shooters can be exposed to lead that has accumulated in soil dust. Additionally, the shooters can then bring these particulates back to their home and expose their families as with other lead occupational hazards."

"Dust from lead contaminated soil can be resuspended into the atmosphere and transported from a firing range whether outdoor or indoor [20, 21]. Lead in soils and dusts at firing ranges are highly bioavailable [22]. Lead in soil could weather/oxidize and migrate down-gradient to underlying groundwater beyond the firing range boundaries [23]. The low solubility of lead in natural water (i.e., not mining related), however, limits off-site aquatic transport."

"Data from collected studies reveals the widespread occurrence of BLL by occupational and recreational shooters. The vast majority of these articles reported at least one BLL that exceeded 10 μg/dL. About half of the studies further reported BLLs exceeding 20 μg/dL (18 articles), exceeding 30 μg/dL (17), and even exceeding > 40 μg/dL (15). Indeed, all 36 of the articles indicated BLLs of shooters exceeded 2 μg/dL. Considering that the geometric mean BLL of the U.S. adult population in 2009–2010 was 1.2 μg/dL [34], the BLLs among shooters provide stark evidence of significant exposure, particularly to recreational shooters who do not typically self-screen for BLL."

"Several studies focused on before-after comparisons of shooters, particularly shooters in military and police occupations, and found marked increases in BLL resulting from firing range activities. Tripathi et al. (1989) [9] measured BLLs in police cadets before, and 1, 2 and 5 days after starting shooting practice, and 69 days after the start of shooting. At 69 days after the start of shooting, the BLLs of the cadets remained above baseline levels prior to shooting. Rocha et al. (2014) [35] conducted a study of BLLs of police cadets before a shooting course and 3 days after the cessation of the shooting course. The mean BLL of cadets increased from 3.3 μg/dL (95% CI = 3.0–3.6 μg/dL) before the course to 18.4 μg/dL (95% CI 16–21 μg/dL) 3 days after completion of the course. In all cases the BLL increased significantly after the course (p <0.001). Within 3 days, the BLLs of the course instructors increased from 3.6 μg/dL to 22.1 μg/dL in one case and from 7.7 μg/dL to 18.3 μg/dL in another. Fischbein et al. (1979) [36] conducted a study of 23 firearms instructors and reported that the BLLs increased measurably after firearms training. Vivante et al. (2008) [37] reported a statistically significant (p <0.001) increase in BLLs of 29 Israeli soldiers from a baseline of 10.3 ± 2.0 μg/dL to 18.9 ± 3.6 μg/dL six weeks after training."

"Several studies provide insight into the decline in BLLs following shooting events. Goldberg et al. (1991) [38] observed that average BLLs in 7 firing range instructors decreased from 45 μg/dL to 31 μg/dL 6 months after a training event. George et al. (1993) [39] observed that average BLLs in 52 small bore rifle recreational shooters declined from 54.7 μg/dL at the end of the indoor season to 33.1 μg/dL in 37 of the shooters by the preseason of the following year. Smart et al. (1994) [40] observed that average BLLs of 20 howitzer operators declined from 20.1 μg/dL to 11.9 μg/dL in 12 operators 8 weeks after ending the firing exercise. Tripathi et al. (1989) [9] observed that BLLs of 7 outdoor firing range police cadets had a baseline average of 6 μg/dL prior to commencing shooting training and an average BLL of 15 μg/dL at the end of training 5 days later. At follow up 69 days after training, the average BLL was 9 μg/dL. Thus, the results indicate that BLLs following shooting events can remain elevated for a considerable time after cessation of shooting, especially for participants with higher BLLs."

"Madrid et al. (2016) [41] reported that BLLs were higher (p <0.001) in individuals who participated in greater than 12 shooting practice sessions per year (8.3 ± 2.4 μg/dL) compared with controls who shot less than 12 times per year (5.2 ± 2.5 μg/dL)."

"Demmeler et al. (2009) [44] observed that the larger the caliber of the weapon, the higher the shooters BLL. The following median BLLs were reported: airguns – 3.3 μg/dL (range 1.8–12.7 μg/dL); 0.22 caliber weapons – 8.7 μg/dL (range 1.4–17.2 μg/dL); 0.22 caliber and large caliber handguns (9 mm or larger) – 10.7 μg/dL (range 2.7–37.5 μg/dL); and large caliber handguns – 10.0 μg/dL (range 2.8–32.6 μg/dL)."

"Tripathi et al. (1991) [46] compared the BLLs in firearm instructors using copper jacketed and non-jacketed bullets. One shooting instructor exhibited BLLs of 24.0 μg/dL and 22.0 μg/dL using non-jacketed bullets and copper-jacketed bullets, respectively. A second instructor exhibited BLLs of 14.1 μg/dL and 13.0 μg/dL using non-jacketed bullets and copper-jacketed bullets, respectively."

"Elevated BLLs especially arising from indoor firing ranges are the result of the greater absorption of lead from inhalation compared with ingestion and dermal absorption. For example, the amount of absorption of ingested lead by adults under non-fasting conditions ranges from 3 to 10% and in young children from 40 to 50% whereas inhaled lead lodging deep in the respiratory tract seems to be absorbed equally and totally, regardless of chemical form [47]. As shooting involves generation of extremely fine particles and gases, the high rate of absorption logically results in elevated BLLs. Outdoor ranges, presumably well-ventilated by natural flow and large air volumes, do not necessarily prevent lead exposure from shooting activities."

"Lead exposure of women and children have special characteristics that must be taken into account. The needs relate to the effect of lead on future generations. For women the needs are related to the effect of lead on the developing fetus and post-natal exposure associated with breast-feeding. For children the special needs for low exposure are related to the extraordinary sensitivity of the developing organs of children. These concerns indicate the need for a margin of safety."

"The risk to women exposed to lead at firing ranges is of particular concern because, once absorbed, a proportion of the lead is deposited in the skeleton and more than 90% of lead in adults is stored in their bones. Bone storage takes place because due to their similar ionic radius and charge lead is substituted for calcium. Furthermore, when a woman becomes pregnant the fetus requires calcium and, depending on the dietary intakes, a proportion of calcium is derived from remodelling of the bones. Skeletal lead stores are released from the remodelling exposing the fetus during critical development windows [49–51]. Even modestly elevated BLL’s have been associated with serious neurological disorders such as autism [52]. Lead released from a woman’s bones during pregnancy is associated with foetal developmental problems [53]. Another consideration for female shooters is that when their BLL becomes elevated, they can pass the lead on to their children through breast milk [54, 55]. Given the known lead contamination at firing ranges, intending-to-conceive, pregnant women, and nursing mothers should curtail exposure from shooting activities (employed in the security, military and police, and recreational shooters) and observe precautionary prevention."

"In contrast to occupational environments where work clothes should not be taken home, lead dust can adhere to shooters clothes and potentially contaminate vehicles and homes. The CDC (1996) [65] measured carpet dust lead concentrations in FBI student dormitory rooms and in 14 non–student dormitory rooms at a firing range and training facility. They observed that student dormitory rooms had significantly higher lead levels than non–student dormitory rooms, suggesting that the FBI students were contaminating their living quarters with lead. ‘Take home lead’ has been described mostly for occupational settings [66–68] but given the fine particle nature and lead concentrations of dust associated with shooting, the ‘take home lead’ pathway of exposure from shooting must be recognized and curtailed."

"Shooting lead bullets at firing ranges results in elevated BLLs at concentrations that are associated with a variety of adverse health outcomes and the topic of health risk is an ongoing topic of study. Of major concern is the number of women and children among recreational shooters, who are not afforded similar health protections as occupational users of firing ranges. Nearly all BLL measurements compiled in the reviewed studies exceed the level of 5 μg/dL recommended by the U.S. CDC/NIOSH, and thus firing ranges, regardless of type and user classification, constitute a significant and currently largely unmanaged public health concern. Primary prevention of this risk requires development of lead-free primers and projectile bullets. Prevention includes better oversight of ventilation systems in indoor ranges and development of airflow systems at outdoor ranges, protective clothing that is changed after shooting, and cessation of smoking and eating at firing ranges. The mismatch between what is recommended for individuals by the U.S. CDC is in stark contrast to the allowable levels for occupational exposure, and there are no real systematic biomonitoring programs for firing range users to measure cumulative health effects caused by persistent low and even high-level lead exposure. Recreational shooters and the general public are provided no legal protections from lead exposures at firing ranges. In conclusion, while the past two decades have brought substantial improvements in analytical capabilities to detect lead in humans the literature evidence indicates that we fall far short of human health safety criteria in firing ranges of all types, and among occupational and recreational shooters."​
 
EMF Mitigation - Flush Niacin - Big 5 Minerals

Similar threads

Back
Top Bottom