Neonatal Maternal Separation Alters, In A Sex-Specific Manner, The Expression Of TRH, Of TRH-Degradi

Discussion in 'Scientific Studies' started by Drareg, Sep 7, 2016.

  1. Drareg

    Drareg Member

    Joined:
    Feb 18, 2016
    Messages:
    1,865
    Gender:
    Male
    Hypothalamic-pituitary-thyroid (HPT) axis activity is important for energy homeostasis, and is modified by stress. Maternal separation (MS) alters the stress response and predisposes to metabolic disturbances in the adult. We therefore studied the effect of MS on adult HPT axis activity. Wistar male and female pups were separated from their mothers 3 h/d during postnatal day (PND)2-PND21 (MS), or left nonhandled (NH). Open field and elevated plus maze tests revealed increased locomotion in MS males and anxiety-like behavior in MS females. At PND90, MS females had increased body weight gain, Trh expression in the hypothalamic paraventricular nucleus, and white adipose tissue mass. MS males had increased expression of TRH-degrading enzyme in tanycytes, reduced TSH and T3, and enhanced corticosterone serum concentrations. MS stimulated brown adipose tissue deiodinase 2 activity in either sex. Forty-eight hours of fasting (PND60) augmented serum corticosterone levels similarly in MS or NH females but more in MS than in NH male rats. MS reduced the fasting-induced drop in hypothalamic paraventricular nucleus-Trh expression of males but not of females and abolished the fasting-induced increase in Trh expression in both sexes. Fasting reduced serum concentrations of TSH, T4, and T3, less in MS than in NH males, whereas in females, TSH decreased in MS but not in NH rats, but T4 and T3 decreased similarly in NH and MS rats. In conclusion, MS produced long-term changes in the activity of the HPT axis that were sex specific; response to fasting was partially blunted in males, which could affect their adaptive response to negative energy balance.




    Neonatal Maternal Separation Alters, in a Sex-Specific Manner, the Expression of TRH, of TRH-Degrading Ectoenzyme in the Rat Hypothalamus, and the ... - PubMed - NCBI
     
Loading...