Mirtazapine Elevates Neurosteroids, Lowers Others

DaveFoster

Member
Joined
Jul 23, 2015
Messages
5,027
Location
Portland, Oregon
This study reflects the findings of forum member haidut and Ray, where antidepressants possess progesterone-like effects in the brain. Besides its benefits for hormonal health, mirtazapine seems to exert beneficial effects on the neuron. However, it lowers 3-beta, 5-alpha-tetrahydroprogesterone, so this should be investigated further.

Influence of mirtazapine on plasma concentrations of neuroactive steroids in major depression and on 3alpha-hydroxysteroid dehydrogenase activity. - PubMed - NCBI

"Concentrations of 3alpha-reduced neuroactive steroids are altered in depression and normalize after antidepressant pharmacotherapy with selective serotonin re-uptake inhibitors (SSRIs). We investigated the impact of mirtazapine on the activity of a key neurosteroidogenic enzyme, the 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD), and on the levels of neuroactive steroids in relation to clinical response. A total of 23 drug-free in-patients suffering from a major depressive episode (DSM-IV criteria) underwent 5-week treatment with mirtazapine (45 mg/day). Plasma samples were taken weekly at 0800 and quantified for neuroactive steroids by means of combined gas chromatography/mass spectrometry analysis. Enzyme activity was determined by assessment of steroid conversion rates. Irrespective of clinical outcome, there were significant increases in 3alpha,5alpha-tetrahydroprogesterone, 3alpha,5beta-tetrahydroprogesterone, 5alpha-dihydroprogesterone, and 5beta-dihydroprogesterone after mirtazapine treatment, whereas 3beta,5alpha-tetrahydroprogesterone levels were significantly decreased. In vitro investigations demonstrated a dose-dependent inhibitory effect of mirtazapine on the activity of the microsomal 3alpha-HSD in the oxidative direction (conversion of 3alpha,5alpha-tetrahydroprogesterone to 5alpha-dihydroprogesterone). Mirtazapine affects neuroactive steroid composition similarly as do SSRIs. The inhibition of the oxidative pathway catalyzed by the microsomal 3alpha-HSD is compatible with an enhanced formation of 3alpha-reduced neuroactive steroids. However, the changes in neuroactive steroid concentrations more likely reflect direct pharmacological effects of this antidepressant rather than clinical improvement in general."

The next study investigates the effects of 3-beta,5alpha-tetrahydroprogesterone, and it finds that it lacks the neuroprotective effect of the other 5-ar reduced steroids.

Reduced progesterone metabolites protect rat hippocampal neurones from kainic acid excitotoxicity in vivo. - PubMed - NCBI

"The ovarian hormone progesterone is neuroprotective in some animal models of neurodegeneration. Progesterone actions in the brain may partly be mediated by the locally produced metabolites 5alpha-dihydroprogesterone and 3alpha,5alpha-tetrahydroprogesterone. The neuroprotective effects of these two metabolites of progesterone were assessed in this study. Ovariectomized Wistar rats were injected with kainic acid, to induce excitotoxic neuronal death in the hippocampus, and with different doses of 5alpha-dihydroprogesterone and 3alpha,5alpha-tetrahydroprogesterone. The number of surviving neurones in the hilus of the dentate gyrus of the hippocampus was assessed with the optical disector method. The administration of kainic acid resulted in a significant decrease in the number of hilar neurones and in the induction of vimentin expression in reactive astrocytes, a sign of neural damage. Low doses of 5alpha-dihydroprogesterone (0.25 and 0.5 mg/kg body weight, b.w.) prevented the loss of hilar neurones and the appearance of vimentin immunoreactivity in astrocytes. Higher doses (1-2 mg/kg b.w.) were not neuroprotective. By contrast, low doses of 3alpha,5alpha-tetrahydroprogesterone (0.25-1 mg/kg b.w.) were unable to protect the hilus from kainic acid while higher doses (2-4 mg/kg b.w.) were protective. The different optimal neuroprotective doses of 5alpha-dihydroprogesterone and 3alpha,5alpha-tetrahydroprogesterone suggest that these two steroids may protect neurones using different mechanisms. The neuroprotective effects of 3alpha,5alpha-tetrahydroprogesterone may be exerted by the inhibition of neuronal activity via the GABAA receptor. This latter possibility is supported by the observation that 3beta,5alpha-tetrahydroprogesterone, an isomer of 3alpha,5alpha-tetrahydroprogesterone that does not bind to GABAA receptor, was not neuroprotective. In summary, our findings suggest that progesterone neuroprotective effects may be, at least in part, mediated by its reduced metabolites 5alpha-dihydroprogesterone and 3alpha,5alpha-tetrahydroprogesterone."
 
OP
DaveFoster

DaveFoster

Member
Joined
Jul 23, 2015
Messages
5,027
Location
Portland, Oregon

Similar threads

Back
Top Bottom