Battles With Iron: Manganese In Oxidative Stress Protection

Discussion in 'Articles & Scientific Studies' started by paymanz, Jun 16, 2016.

  1. paymanz

    paymanz Member

    Joined:
    Jan 6, 2015
    Messages:
    2,650
    Gender:
    Male
    Battles with Iron: Manganese in Oxidative Stress Protection
    Abstract
    The redox-active metal manganese plays a key role in cellular adaptation to oxidative stress. As a cofactor for manganese superoxide dismutase or through formation of non-proteinaceous manganese antioxidants, this metal can combat oxidative damage without deleterious side effects of Fenton chemistry. In either case, the antioxidant properties of manganese are vulnerable to iron. Cellular pools of iron can outcompete manganese for binding to manganese superoxide dismutase, and through Fenton chemistry, iron may counteract the benefits of non-proteinaceous manganese antioxidants. In this minireview, we highlight ways in which cells maximize the efficacy of manganese as an antioxidant in the midst of pro-oxidant iron.


    Salt shield: intracellular salts provide cellular protection against ionizing radiation in the halophilic archaeon, Halobacterium salinarum NRC-1. - PubMed - NCBI

    The halophilic archaeon Halobacterium salinarum NRC-1 was used as a model system to investigate cellular damage induced by exposure to high doses of ionizing radiation (IR). Oxidative damages are the main lesions from IR and result from free radicals production via radiolysis of water. This is the first study to quantify DNA base modification in a prokaryote, revealing a direct relationship between yield of DNA lesions and IR dose. Most importantly, our data demonstrate the significance of DNA radiation damage other than strand breaks on cell survival. We also report the first in vivo evidence of reactive oxygen species scavenging by intracellular halides in H. salinarum NRC-1, resulting in increased protection against nucleotide modification and carbonylation of protein residues. Bromide ions, which are highly reactive with hydroxyl radicals, provided the greatest protection to cellular macromolecules. Modified DNA bases were repaired in 2 h post irradiation, indicating effective DNA repair systems. In addition, measurements of H. salinarum NRC-1 cell interior revealed a high Mn/Fe ratio similar to that of Deinococcus radiodurans and other radiation-resistant microorganisms, which has been shown to provide a measure of protection for proteins against oxidative damage. The work presented here supports previous studies showing that radiation resistance is the product of mechanisms for cellular protection and detoxification, as well as for the repair of oxidative damage to cellular macromolecules. The finding that not only Mn/Fe but also the presence of halides can decrease the oxidative damage to DNA and proteins emphasizes the significance of the intracellular milieu in determining microbial radiation resistance.
     
  2. What-a-Riot

    What-a-Riot Member

    Joined:
    Jun 16, 2015
    Messages:
    154
    Possible mechanism behind health benefits of tea. It's high in manganese and binds iron so it can help regulate the balance
     
Loading...